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Review 
Ostwald ripening and its application 
to precipitates and colloids in ionic 
crystals and glasses 

S. C. J A I N * ,  A. E. HUGHES 
Materials Development Division, Atomic Energy Research Establishment, Harwell, 
Didcot, Oxon, UK 

The theory of Ostwald ripening developed by Lifshitz and Slezov and by Wagner (LSW 
theory) has been used for many years to interpret ageing experiments in metallic alloys. 
The theory is reviewed, and extended in some respects which are suggested by using it 
to interpret experiments on the ripening of precipitates and colloids in non-metallic 
systems. A detailed treatment is given for the case where the diffusion of solute species 
down dislocations or grain boundaries controls the ripening rate and the particle size 
distribution. The assumptions and approximations used in the theory are examined, and 
it is shown that an inhomogeneous spatial distribution of particles can lead to several 
independently ripening systems within the same sample if groups of particles are 
separated by distances large compared with the interparticle separation within each 
group. The theory is then used to interpret observed 'size distributions of precipitates in 
alkali halides and glass. Some of the data do not fit into the framework of the LSW 
theory and it is suggested that this is the result of the extremely inhomogeneous spatial 
distributions of particles found in electron microscope studies of these systems 

1. Introduction 
Studies of the precipitation of particles from a 
supersaturation of a solute in a crystal matrix were 
first made by Frank, [1], Zener [2], Wert [3], 
Wert and Zener [4, 5], Ham [6, 7] and others 
(see Christian [8] for references to other papers). 
If the time of nucleation is relatively short, the 
particle size distribution remains narrow during 
the process of precipitation from a high super- 
saturation. However, when most of the excess 
solute has been precipitated, and the super- 
saturation has become small, the smaller particles 
begin to dissolve and the larger particles grow by 
"devouring" the smaller particles, a process 
known as Ostwald ripening. The driving force for 
Ostwald ripening arises because the concentration 
of solute in the vicinity of small particles is greater, 

and that in the vicinity of large particles less, than 
the average supersaturation. The solute therefore 
flows from small particles to the crystal matrix 
and from the matrix to the large particles. The 
theory of Ostwald ripening was formulated by 
Greenwood [9] and considerably extended by 
Lifshitz and Slezov [10-12] and Wagner [13], 
and has become known as LSW theory. Modifi- 
cations to the theory have been suggested by 
ArdeU [14] ,Dunning [15] andKahlweit [16-18]. 
The LSW theory predicts that for large values of 
time, the average radius /~ grows as t n where 
n < 1 and the size distribution expressed as F ( R / R )  

does not depend on time. A number of reviews 
of Ostwald ripening theory have been published 
(for example [17, 19, 20] ), treating various aspects 
of the problem. 
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Extensive experimental work has been done on 
the measurement of size distributions of precipi- 
tates in metal alloys (see the review by Greenwood 
[20]), notably by ArdeU and associates (see [211 
for reference to several earlier papers). In the 
majority of cases studied, the average particle 
radius R seems to follow the t z/3 growth law, as 
predicted by the theory when the ripening process 
is controlled by volume diffusion of solute through 
the matrix*, However, in most cases, the observed 
size distribution curves are much wider than those 
predicted by the theory. In many cases, a few 
large particles are found, which do not form part 
of the main system of particles. In some cases, a 
tail on the large size side is observed, in complete 
contradiction to the LSW theory, which predicts 
distributions with a sharp cut-off. 

More recently, size distributions of colloids and 
precipitates in non-metals have been reported 
[24-30],  and attempts have been made to in- 
terpret some of the results theoretically [31, 32]. 
Except for the results for silver particles in KCI 
[26], where the size distributions are narrow, the 
observed distributions have the same general 
features as precipitates in metal alloys discussed 
above. The K and Na colloid size distributions 
in KC1 and NaCt [24] have a tail on the large size 
side. The size distribution of silver particles in 
photosensitive glass observed by Kreibig [25] is 
too wide, and a few large particles, which do not 
form part of the general s-ystem of particles, are 
observed. In NaC1 crystals containing a low Mn 
concentration, the size distribution of MnC12: 
6NaC1 precipitates (Suzuki phase) [27] appears to 
be similar to the distributions observed in metal 
alloys. As the concentration of Mn increases, the 
distribution becomes very complex. In view of 
all these deviations between experiment and the 
LSW theory, it seems pertinent to exanaine the 
limitations of the theory and the extent to which 
modifications which take further account of the 
physics of the problem can improve the under- 
standing of Ostwatd ripening processes, particularly 
in non-metallic systems. 

The effect of dislocations or grain boundaries 
on transport of solute atoms is well known [7, 20, 
28.-30, 33-38] .  It is not clear whether any of the 
discrepancies discussed above could be due to the 
effect of dislocation diffusion on the size distil- 

bution, since the detailed statistical theory for this 
case has not previously been fully developed [20]. 
In the next section we extend the LSW theory to 
the case of dislocation or grain boundary diffusion, 
making the same approximations as used by 
IAfshitz, Slezov and Wagner. In Section 3 we 
examine critically some of the approximations 
used in the theory. Using the results obtained in 
Sections 2 and 3, we compare, in Sections 4 and 5, 
the size distributions observed in non-metals with 
the modified theories. The results point to some 
new features of Ostwald ripening which are of 
general interest in materials science. 

2. Ripening theory and its extension to 
the case of diffusion through 
dislocations or grain boundaries 

2,1. The three basic cases 
During Ostwald ripening, solute atoms must diffuse 
through the matrix so that matter can be trans- 
ported from small precipitates to large precipitates. 
This implies that solute atoms can evaporate 
freely from the small particles and then condense 
on the large particles once they i~ave arrived in 
their vicinity. Although in principle the theory 
can be developed for the general case where both 
processes are considered [13, 201, analytical 
results are only obtained when one of these steps 
is the rate-limiting wocess. We can distinguish 
three different cases, according to the transport or 
reaction process which is considered to determine 
the kinetics of the particle ripening. If evaporation 
or condensation of solute at the precipitates is the 
rate-controlling process, regardless of the mechan- 
ism of diffusion through the matrix, then 
we have what is referred to as the "surface 
reaction" case, case I. Case 2 refers to the situation 
where the rate-controlling step is bulk diffusion 
of solute through the matrix, tile "volume dif- 
fusion" case. Finally, case 3 covers the situation 
where diffusion of solute through the matrix takes 
place by dislocation pipe or grain boundary dif- 
fusion. Simple theoretical results can be obtained 
if any one of these three processes determines the 
rate of ripening. The LSW theoretical results for 
the first two cases are available (see [20]). We 
derive the results for the dislocation or grain 
boundary case in this section. Some other cases 
(e.g. surface reaction limited with second-order 

*See however Smith [22] who showed that the same experimental data can be fitted with t '/3 and t ~/~ laws, the latter 
being valid for the case where the ripening rate is controlled by surface reactions at the precipitate. (See also discussion 
after the paper by Mukherjee and Sellars [23] ). 
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kinetics) have been discussed by Kahlweit [17, 19]. 
The assumptions under which we shall develop 

the theory are the same as those discussed by 
Wert and Zener'[5] and Greenwood [9] ,and used 
by Lifshitz and Slezov [10] and Wagner [13].  We 
shall discuss some of  these assumptions in Section 3 
after presenting the main results. To make the 
article self-contained, the detailed mathematical 
steps are included as appendices. 

(a) 

distocotion line I 

2.2. Growth rate of particle radius, dR/dt 
In Ostwald ripening, the large particles or precipi- 
tates grow and the small ones shrink. The solute 
atoms migrate to the growing particles and away 
from the shrinking particles. For convenience, we 
shall generally discuss the "growing" particles and 
the "migration to"  the particles. The case of  
shrinking particles follows by implication. Both 
cases will be discussed explicitly where necessary. 

In general the particle will receive solute 
directly from the matrix by bulk diffusion as well 
as by diffusion through dislocations or grain 
boundaries. I f  the dislocation density is large and 
if the temperature is not  high, the amount of  solute 
received through dislocations or subboundaries 
(or grain boundaries in the case of  polycrystals) 
can be considerably greater than that received by 
bulk diffusion. We first discuss the case of  dis- 
location diffusion. The meaning of  all the symbols 
used is summarized in Appendix 1. The calculation 
is considered in more detail in Appendix 2. 

Consider a precipitate particle connected to the 
solute in the matrix through a dislocation line 
of  "radius" a (Fig. la)*. The diffusion equation 
for transport of  solute within the dislocation 
line is (in the steady state approximation where 

= 0, see Section 3.3) 

d2 C + /(x)  0 (1) 
rca2D1 dx 2 

where f (x)  is the total flux of  solute atoms entering 
the dislocation line from the bulk at a distance x 
from the precipitate. 

The boundary conditions along the dislocation 

,bC ~ b 

t 
grain boundary 

~'212 

Figure 1 A spherical particle ripening (a) on a dislocation 
line, and (b) on a grain boundary. 

line are 

and 

C(x) = CR whenx  = R (2) 

C(x) = C a when x -~ oo (3) 

Consider now the solute concentration outside the 
dislocation line. Except very near the particle, the 
concentration is practically uniform everywhere in 
the absence of  the dislocation line. However, in 
the presence o f  the dislocation line, the concen- 
tration near the dislocation line i.e. for s ~ a 
(Fig. la) will change, but will attain its average 
value Ca at large values of  s. The problem of 
calculating j (x )  thus reduces to that of  radial 
diffusion into an infinite cylinder with the 
boundary conditions 

C = C(x) whens  = a (4) 

C = C a when s -+ oo (5) 

The solution of  radial flow in an infinite cylinder 
is well known [401 andwe can easily calculate j(x), 
integrate Equation 1 and obtain an expression for 

*The stress field of the dislocation line causes the atoms to drift into the dislocation line [39]. For the large values of 
time (t = 0 when precipitation begins) with which we are concerned in the ripening process, tile drift is taken into 
account by replacing a by an effective capture radius a e [7, 36] given by 

a e = mB/kT (6) 

where B is the strength of the dislocation potential and m = 1.80 for the screw dislocation and 0.45 for the edge dislo- 
cation. 
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the solute current density D1 (dC/cL'C)x=R into the 
particle (see Appendix 2). The conservation o f  
solute atoms then leads to an equation for the rate 
of change of particle radius. 

(Cp--Cn)41rR2dR= 2zra2D,(dC) 
d--t R 

(7) 

With Cp >> CR this leads to an expression for dR/dt 
of the form 

dR a (Ca--CR) 
dt - R 2 Cp (8) 

where G is a constant which involves the diffusion 
coefficients D1 and D and can easily be evaluated 
(see Appendix 2). 

Bullough and Newman [36] have used a "gas 
like" boundary condition instead of Equation 4 
in order to calculate the flow of solute atoms into 
the dislocation line. It is shown in Appendix 2 
that their treatment also leads to an expression of 
the same type as Equation 8. It is clear that 
/~ =R  -2 will result from any model where the 
solute current to the particle is independent ofR.  

We now discuss the case of grain boundary 
diffusion. Appendix 2 describes in detail our 
extension and generalization of the treatment 
given by Chakraverty [41], Vengrenovitch and 
Psarev [42] and Vengrenovitch [43] for particles 
on a surface, and by Speight [34] and Greenwood 
[20] for particles at grain boundaries. The dif- 
fusion equation for diffusion through the grain 
boundary is 

Dgb 0 xOC 
- -  + j ' ( x )  = 0 (9 )  

x 0x 0x 

where ] '  (x) takes account of the flux of solute 
from the bulk to the grain boundary surface. The 
boundary conditions are 

C = CR a tx  = R ( t0)  

C = CaatX = L,L >> R (1i)  

The solute current ]'(x) can be calculated as- 
suming steady state diffusion from the matrix into 
the grain boundary (as was done in the case of 
bulk diffusion by Lifshitz and Slezov [12] and 

Wagner [13]), and using the boundary condition 
that C =  C a at some large distance l from the 
boundary. Equation 9 can then be integrated in 
terms of Bessel functions of the second kind (see 
Appendix 2). Using approximations Dg[D>> 
R2/lb, Cp>>CR and that In (4Dglb[DR 2) is a 
slowly varying function of R, the solution can be 
shown to reduce to the form in Equation 8. 

2.3. Ripening rate and size d is t r ibut ion 
for the grain boundary or dislocation 
case 

The size distribution f(R, t) is obtained by the 
solution of the continuity equation [10, 13] 

Of O(y.R) 
(12) 

a t  0R 

under conditions where the total number of solute 
atoms is conserved and R = dR/dt is given by an 
equation such as Equation 8. We follow the 
method of Lifshitz and Slezov in order to find the 
distribution function f(R, t) for the quasi-steady 
state reached at large values of t.* The procedure 
is described in detail in Appendix 3, and we 
confine ourselves in this section to the main results 
of this treatment for case 3 and compare them 
with the results of cases i and 2 (see Section 2.1) 
as derived by Lifshitz and Slezov [10, 12], Wagner 
[13] and others. 

The starting point in all treatments is to express 
the concentration of solute CR in equilibrium with 
the particle of radius R by Thomson's equation 
(see for example [9]). 

cR = c exp (s/R) (13a) 

where C~ is the solute concentration in equilibrium 
with a plane surface and a -- 2 ~2o/kT where fZ is 
the atomic volume and o the interfacial energy of 
the particle in the matrix. (Note that Lifshitz and 
Slezov use a different definition of a, and Cp 
seems to be omitted from the expressions in their 
papers). 

Assuming a ~ R (see Section 3 for a discussion 
of this point), Equation 13a can be expanded to 
give 

CR = C= (1 + aiR) (13b) 

*This asymptotic region of the LSW theory cannot persist to very large times, because ultimately the system should 
ripen into one large particle. This point is discussed in papers by Kahlweit [16-18], but he does not derive any 
analytical expression for the upper limit of time. This is an aspect of the theory where numerical calculations may be 
helpful in the future. In this review we confine attention to the LSW region. 
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which allows Equation 8 to be written as 

- (14 )  

Here Re,  the "critical radius", is the radius of  a 
particle which is instantaneously in equilibrium 
with the mean solute concentration so that 
CR = Ca and/~ = 0. From Equation 13b, 

C a = C= (1 + c4Rr (15) 

R e is a crucial parameter in the LSW theory, since 
the radius distribution function expressed in terms 
of  the reduced variable R/Re is found to be 
asymptotically independent of  the time t. 

Following the method of  Lifshitz and Slezov, 
we use the following substitutions (see Appendix 3) 

u = R/Re (16) 

R4c(t) 
r = In Rc4(0---- ~ (17) 

Equation 14 can now be expressed as 

du 4 
- -  = dr 3' (u 1) --  u 4 (18) 

where 

4aGC~ dt 
3' - 7 (19) 

d(Re 4) c i ,  

Lifshitz and Slezov present rather involved 
arguments to show that 3' must tend to a constant 
3'0 for large values of  time. Precisely the same 
arguments can be used in our case, and lead to 
the same conclusion. The Value of 3'0 is found by 
demanding that duldr and its first derivative with 
respect to u are zero at some value of u =Uo.  
Following this procedure, we get 

7o = 4u{ (20) 

and 

Uo = 4/3 (21) 

We now follow further the method of  Lifshitz and 
Slezov and integrate Equation 12 with the help of  
Equations 18 to 21, see Appendix 3. The final 
results can be put in the form, valid for large times 
(such that Re >> Re (0), see [12] ): 

Constant 
f (R ,  t) - - -  F 3 ( u )  (22a) 

t 

F3 (u) = 

(Uo - u )  '9/6 (u 2 + 2uou + 4Uo) 23/'2 

fo ru  ~< 4/3, a n d F 3 ( u )  = 0 f o r u > 4 / 3 .  (22b) 

64CI ,R4(0) .  
For t >> T3 = 

27~GC~ 

R 4 = R~(0)(1  + tiT3) (23) 

aC= 
C a - -  C ~  - o: t - ' / 4  (24) 

Re 

n(t) o~ t -3/4 ( 2 5 )  

For the sake of completeness we write below 
corresponding expressions for the surface reaction 
and the bulk diffusion cases and show the plots of  
F ,  (U),/;2 (u) and Fa (u) in Fig. 2. 

For case 1 i.e. for surface reaction controlled 
ripening, we have 

exp [-- 3u/(2 -- u)] 
F1 (U) ---- U 

( 2  - u) ~ 

F l ( u )  = 0 f o r u > 2 . 0  

for u ~ 2.0, 

(26) 

2 C I , R ~ ( O )  . 
For t >> r l  = 

aKC~ 

R~ = R~(0)(1 + t/T,) (27) 

C a - - C =  oc t  -1/2 ( 2 8 )  

n (t) cc t -  3,2 (29) 

Similarly for the bulk diffusion case, ease 2, we 
have 

F2 (u) = u 2 exp [-- 2u/(3 -- 2u)] 
f o r u  .< 1.5, 

F2 (u) = 0 for u > 1.5. (30) 

9Ci,Rea(0). 
For t >> r2 = 

4aDC~ 

Rc a = Rc3(0)(1 + t/r2) (31) 

c a - c ~  ~ t -'/3 (32) 

n ( 0  ~ t - '  (33) 

In all cases 

Re = f/~ (34) 
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Figure 2 Theoretical  size distr ibutions:  F~ (u) for the surface react ion case, F 2 (u) for the bulk  diffusion case and F 3 (u) 

for the dislocation and grain boundary  diffusion case. The maximum values of the three funct ions occur at u = 1.00, 

u = 1.135 and u = 1.142 and the functions become zero at u = 2.00, u = 1.50 and u = 1.33 respectively. Note that  

F(u) varies as u, u 2 and u 3 near u = 0 in the three cases, and the dis tr ibut ion becomes sharper in going from the surface 

reaction case to the bulk diffusion case and from the bulk diffusion case to the dislocation and grain boundary  

diffusion case. The critical radius R e grows at t u2, t 1/3 and t 1/4 respectively in the three cases. 

where f = 1 for the bulk diffusion case and is close 
to 1 for the other cases. In fact, in all cases it is 
possible to relate Rc exactly to the mean value of  
some power of  the radius (see Appendix 3 and 
[13]). Thus in case 3 we find Re 1 = R -  a. 

2.4. Comparison of the three cases 
If we write 

dt - R" -- (35) 

then n = 0, 1 and 2 respectively for the three cases 

discussed above (see [20]). The maximum of 
dR/dt occurs at values of  R given by 

n + l  
R = R~ (36) 

n 

There is no value of  R for which dR/dt is a true 
maximum for the surface reaction case for which 
n = 0. For the bulk diffusion case (n = 1) and 
the dislocation diffusion case (n = 2), the maxima 
of  dR~dr occur at R/Re = u = 2 and 3/2 respect- 
ively. It is tempting to argue that since particles 

of  these radii grow at a maximum rate, the 
maxima of  the size distributions may occur near 
these values. The size distribution expressions 
show that particles of these radii are never present 
once the asymptotic limit is reached, and in fact 
maxima in the three cases occur (Fig. 2) at 
u = 1.000, 1.135 and 1.142 i.e. increasing with n, 
a trend opposite to that of  the values at which 
maxima of  dR/dt occur. As the value of  n in- 
creases, the dependence of  dR/dt and F(R]Rc) 
on R becomes stronger. For u =R/Rc-+ O, the 
1/R e term in Equation 35  can be neglected and 
dR/dt varies as 1/R n+l and F(R/Ro) as 
(R/Re) n+l. Thus near u = 0 ,  F(u) rises as u, 
u 2 and u 3 respectively in the three cases (Fig. 2). 
Near the peak of  F(u), the behaviour is largely 

controlled by -- . For R > R e ,  the large 

particles are not able to grow so quickly for large 
values of  n, giving a sharper cut-off for the dislo- 
cation/grain boundary case than for the others, as 
can be seen in Fig. 2. 
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3. Approximations involved in the theory 
3.1. Details of precipitate shapes and 

solute diffusion mechanisms 
Altlaough the ripening theory was developed for 
highly idealized conditions, in many cases the 
main results of the theory can be used even if the 
conditions are not so ideal. Lifshitz and Slezov 
[11, 12] have shown that the results of the theory 
can be used even if the precipitate particles are not 
spherical and even if lattice anisotropy and strains 
are present, provided the parameters in the theory 
(such as radius of the particle R and diffusion 
coefficient D) are reinterpreted and modified. 
Wagner [13] discussed the modification necessary 
in the Thomson equation (Equation 13) if the 
solute consists of dissociating molecules. The 
growth of a precipitate involves not only transport 
of solute atoms (or molecules) from solute rich 
regions to the neighbourhood of the precipitate, 
but also transport of the host lattice atoms from 
the neighbourhood of the precipitate to distant 
regions. The mechanisms of volume tansfer have 
been considered by Oriani [44]. Oriani showed 
how the parameter D used in the theory should 
be reinterpreted or modified for the different 
mechanisms of volume transport. Li et al. [45] 
have also considered how D should be interpreted 
for multi-component diffusion. 

These modifications leave the main results 
(growth law for the critical radius R e and ex- 
pressions for the distribution of sizes etc.) unaltered. 

They become important only if we use the results 
to derive values of o, the surface energy, or D, the 
diffusion coefficient, and therefore make ripening 
rates a dubious method for determining these 
parameters. The modifications cannot be invoked 
to explain the discrepancy between theory and 
experiment discussed in the Introduction, since 
these involved the size distribution functions. 

We discuss below some other approximations 
used in the theory and their effects on the final 
results. 

3.2. Thomson's equation - the capillarity 
effect 

For large values of R, both Equations 13a and b 
are valid. However, for a i r  > 0.3, the approxi- 
mation in Equation 13b becomes poor. Wagner has 
argued that the error involved is not significant 
since the population of the small particles is 
relatively very small. Though this statement may 

be true for the growth of R e and hence/~, the 
errpr can still have a significant effect on the shape 
of F(u) ,  particularly for small values of u. To see 
this, we may proceed as follows. 

The total number of particles per unit volume 
n (t) is given by 

y? n (t) = f ( R ,  t) dR (37) 

and from Equation 12 it follows that (see [13]) 

dn d f o  dt - dt f ( R ,  t )dR  = -- Lim If(R, t)/~]. 
R --> O 

Since dn/dt must depend only on t, it follows that 
as R -+ 0 the function f (R, t) must show the inverse 
functional dependence on R to/~. This enables us 
to find the limiting form of f ( R ,  t) without ap- 
proximating Thomson's equation. 

In general dR/dt  in the three cases has the form 

dR constant 
dt R n (Ca -- CR) (39) 

which leads to Equation 35 when Thomson's 
equation is approximated by Equation 13b. How- 
ever, if we use instead Equation 13a, then we have 

dR constant 
dt R n 

C=e c~/nc [1 -- e c~O/R-1/Rc)] (40) 

Thus it is clear that, as R ~ 0 

R n 
cc -- Rn e - e / R  (41) f ( R , t )  e ~ I R - 1  

This is to be contrasted with f ( R ,  t) ~ R n* 1 which 
results when Equation 13b is used. 

Equation 41 shows that the effect of including 
the proper form of Thomson's equation suppresses 
the population of very small partilces. We can 
understand this result from general physical 
considerations. For small particles the actual value 
of Cn is larger than that given by Equation 13b, the 
solute currents are stronger and dissolution rates 
higher than those calculated on the basis of 
Equation 13b. A comparison of Equation 41 and 
R n+l is shown in Fig. 3. It can be seen that the 
changes in f ( R ,  t) at small R are most obvious for 
case 1. 

The values of interfacial energy a are not 
known with any certainty for most systems (see 
Scott [46] for colloids in alkali halides and 
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Figure 3 Comparison of the functions F(z) = 
zn/(e 1/z -- 1)(full lines) andF(z) = z n§ l (dashed 
lines) for n = 0, 1 and 2 as appropriate for cases 
1,2 and 3. The variable z is written for R/c~ (see 
text). 

Oriani [44] for precipitates in metal alloys). 
Taking a probably high value of o =  1000ergs 
cm -2, ~2 --~ 5 x 1 0  -23 c m  3 and T =  1000K gives 

m 7 n m  and the discrepancy due to the ap- 
proximation in Equation 13b will become signi- 
ficant for R ~ 20 rim. Smaller values of a improve 
the situation so that for a ~ 10 ergs cm -2 (typical 
of Nia A1 in Ni) the approximation is very good. 

Recent theoretical work [47, 48] suggests that 
the binding energy decreases with size for very 
small particles (containing ~ 20 atoms); the inter- 
facial energy also becomes size dependent. 
Equation 13a itself vail not then remain valid for 
such small particles and will underestimate Cn (see 
also [9] ). Presumably these effects will accelerate 
the disintegration rates and reduce further the 
population of the very small particles. 

Since the value of Ca (t) will be affected by the 
higher dissolution rates of these small particles, 
other parts of the distribution curve (i.e. for large 
values of R) may also change. However, it seems 
clear from the preceding arguments that the 
major effect of the approximations in Equations 
13a and b will be to change the functional de- 
pendence of f (R,  t) on R as R -+ 0. 

3.3. Steady state diffusion and 
homogeneous distribution 
approximations 

To obtain expressions for d R / d t  in cases 2 and 3 
where diffusion is involved, it is necessary to 
calculate the solute currents to a growing particle 
or from a shrinking particle. This involves solving 
the diffusion equation 

D V  ~ C = ~ C/~ t (42) 

under the following usual assumptions. 
(1) The interparticle distance X (or distance X 1 

between two dislocations) is much larger than the 
radius R of the particle (or the effective capture 
radius a e in the case of dislocations, case 3). 

(2) The distribution of particles (or dislocations) 
is uniform to satisfy (1) and to permit the ap- 
proximation of spherical symmetry in case 2 and 
cylindrical symmetry in case 3. 

(3) The concentration C is described by steady 
state diffusion, i.e. 3C/Ot and d R / d t  are assumed 
to be zero while calculating C as a function of 
distance from the particle (see also Appendix 2). 

These are the assumptions also used by Wert 
and Zener [5] in their treatment of precipitation. 

1618 



The first term of the more complete eigenvalue 
series of Ham [6] is exactly equivalent to the 
treatment of Wert and Zener, for the spherical 
particle in case 2, and dominates the kinetics 
when X>>R. It can also be shown [49] that 
steady state diffusion conditions are satisfied very 
well when Cp/ (Ca-  CR)>> 1, which holds well 
during the ripening process. The critical as- 
sumptions are, therefore, the assumptions (1) and 
(2) above. 

We discuss the first two approximations, in 
particular the effect of deviations from uniform 
distribution, for case 2. The arguments can be 
easily extended to the other two cases, if necessary, 
with similar conclusions. 

3.4. Inhomogeneities in the Frank-Zener 
precipitation regime 

We first consider the growth of particles from high 
supersaturation studied by Zener [2] and Frank 
[1 ] and then extend the argument to the ripening 
case. 

In the case of precipitation and growth of 
particles of equal radius R (as distinguished from 
Ostwald ripening, designated as the LSW regime), 
the characteristic time 7"z for the depletion of 
supersaturation Ca -- CR is given [5] 

7"z = X3/DR (43) 

where X is the mean interparticle separation. The 
distance over which any fluctuation in Ca will 
be smoothed out in this time is X(X/R) u2 . Any 
deviations from an ideally random distribution will 
therefore not affect significantly the kinetics of 
the precipitation process if they are limited to 
distances of this order. For X ~ 10R this limiting 
distance is a few X. However, it is clear that any 
variation in Ca over a distance larger than this will 
not be able to come into equilibrium during the 
precipitation process, and that the kinetics of 
precipitation must then be altered. 

Now consider two regions of the crystal 
separated by a distance L. Let the particles be 
ideally clistributed (i.e. fluctuation confined to 
distances < few X) in each region, but suppose 
that the values of X and R (or of either one of 
them) are different in the two regions, say Xl and 
RI in the first region and X2 andR2 in the second 
region respectively. The two regions will behave 
almost independently and the values of R as well 

as Ca(t) will continue to be different in the two 
regions if the time 7" 1 ' needed for smoothing out 
the difference in Ca (t), given by 

is much larger than 

Tz 

i.e. if 

r,  = L2/D (44) 

R1D R2D 

L /•I, 2 ' >~ (X/R) 1/21,2 ~ 3 for (X/R)1, 2 10 (45) 

The difference in Ca (t) or R between two 
regions can arise if nucleation occurs earlier in some 
parts of the crystal than in others (e.g. due to 
possible temperature differences in different parts 
of the crystal during cooling) and in XI and X2 if 
nucleation occurs at special sites which are not 
uniformly distributed in the crystal. 

To summarize then, we can say that the precipi- 
tation of second phase particles and depletion of 
Ca ( t ) -  C= in the Frank-Zener regime will be 
described by the equations given by Wert and Zener 
by one single relaxation time ~'z if all particles are 
of equal radii and if the distribution of particles 
is fairly uniform in the solid. Small fluctuations 
in X or R will cause a distribution in the value of 
rz over a small range. However, if there are groups 
of nuclei or particles in high local concentrations, 
separated by a distance L such that L >> X, these 
groups will behave practically independently of 
each other. If C a (t) in any group is different from 
that in another group, the difference will persist 
for most of the precipitation period. In this case 
any measured macroscopic average of C a (t) will 
be a superposition of the values in the different 
regions. The application of this idea to precipi- 
tation data is discussed in more detail by Jain and 
Hughes [50]. 

3.5. LSW regime 
Differentiating Equation 32 with respect to 
time and using Equation 31 we obtain 

d ( C a  - 
- -  �89 ( C a  - -  C=)IrL ( 4 6 )  

dt 

where 

9R3eCp 
ZL - (47) 

4o~DC= 
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is the characteristic time for the rate of chang e of 
(C a - C=) in the LSW regime*. The distance over 
which any fluctuations will be smoothed out in 
~this time .is'of'o~der~(R,.~C~/'aC~) I/z~. The condition 
for two different LSW systems in the same crystal 
to act independently thus becomes 

(R3Cp~ 1/2 
L > \ o~c~ ] (48) 

where L is the distance between the two systems. 
WithRe/a ~ 3, Cp/C= ~ 103 this gives 

L/Re >> 50 i.e.L/X>> 5 if X ~  lORe (49) 

as compared with Equation 45. 
It should be noted that in neither the Frank-  

Zener regime nor the LSW regime is dCa/dt properly 
linear in ( C a -  C=), since, for example, rs  is a 
function of time through R e. Thus a comparison 
of the "time constants" ~'z or rL with L2/D is only 
a very rough criterion. It would be more satis- 
factory to compare the value of dCa/dt due to 
ripening within each LSW system with the rate 
at which the values of Ca in each region tend to 
change due to inter-region diffusion. We can 
express the latter approximately through 

D I d [Ca(2~ Ca(l)] - ~-~ [Ca (2 )  - -  C a ( l ) ]  

L ~ Re(2) Re(l) 

From Equations 46 and 47 we have, in terms of Re 

dCa(1) [ 4a2C~D (51) 
- 27CPR4(1) 

Comparing Equations 50 and 51 we obtain the 
criterion for the two LSW regimes to be inde- 
pendent as 

R~(1---~ " ~ ~ -  -- 1 (52) 

with Re (2) =/3R e (1). 

Equation 52 may be rewritten 

which is essentially the same as Equation 48. If 
two LSW systems are to be recognized as ripening 
independently, Re(2 ) must be significantly dif- 

ferent from Re( l )  i.e./3 appreciably greater or less 
than unity. Equation 53 shows that if/3 ~ 0.5 the 
condition for independent ripening is not difficult 

t o  satisfy2 For example, even if Re "~ 20nm the 
two regions need only be separated by some/am 
in a typical case. In any given situation, one needs 
to examine the values of u, Cp and C. relevant to 
the system concerned. However, we may conclude 
as a result of the arguments in this section that if 
groups of precipitates occur in an inhomogeneous 
distribution as a result of the nucleation process, 
they may subsequently undergo Ostwald ripening 
as almost independent LSW systems with different 
critical radii. Particle size distributions observed 
experimentally may therefore be superpositions of 
several different distribution functions of the 
types described in Section 2. 

The arguments are quite easily extended to 
cover cases 1 and 3, with similar conclusions. In 
fact, the condition for independent ripening 
systems becomes easier to satisfy as one goes from 
case 1 through case 2 to case 3. 

4. Comparison of the theory with 
experiments on non-metallic solids 

4.1. Silver particles in glass 
Kreibig [25] produced silver particles in photo- 
sensitive glass containing 0.02 to 0.06% of Ag20. 
Particles were nucleated by radiation from a 
mercury lamp or by X-rays. The particles were 
grown and ripened at 550~ The glass was 
pulverized and dissolved in water and the size 
distribution of the particles thus released was 
measured using electron microscopy. 

Efforts have been made to fit each of the 
theoretical curves IF1 (u) for the surface reaction 
case, F2 (u) for the bulk diffusion case and F3 (u) 
for the dislocation diffusion case] with the size 
distribution measured by Kreibig. The fits were 
made by scaling the radius coordinate so that 
the peaks of the experimental histogram and 
the theoretical distributions come close together. 
Several such fits may be tried and their success 
judged by inspection. As shown in Fig. 4, F1 (u) 
is too broad to give a satisfactory fit to the data. 
On the other hand, both the curves F2(k) and 
/73 (u) are much too narrow when compared with 
the observed distribution. In any case one would 
not expect the dislocation or grain boundary case 
to be relevant for a glass. 

*Note 7 L contains R~ whereas r 2 given in Section 2.3 contains R~(0), otherwise the expressions are similar. 
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Figure 4 A comparison of the theoretical size distribution 
function F 1 (u) with the experimental data for silver par- 
ticles in glass obtained by Kreibig [25]. The experimental 
data have been recast in terms of u = R/R e by choosing 
a value ofR e which gives the best visual fit. 

We suggested in Section 3 that all particles in a 

matrix need not necessarily form part of one LSW 
system. Based on this suggestion and the argu- 

ments given there, we have tried and fitted success- 

fully two F2(u)  curves with the observed distri- 

bution,  the values o f / ~  being /~1 = 5 .0nm and 
/~z = 6.5 nm for the two systems. It is seen from 
Fig. 5 that the curve F = F 2 ( u l ) ' + F 2 ( u 2 )  
(u I - R / R  1 find u: = R / R 2 )  agrees well with the 
observations. 

Though this agreement of the sum of two Fz (u) 
curves with observations supports strongly the sug- 
gestion that two or more LSW ripening groups 
occur independently in many cases, the real test of 

this suggestion would lie in the measurement of 
the interparticle distances and radius distributions 
in space in the sample. Unfortunately such infor- 

mation is not available in any of the size distri- 
bution measurements reported in the literature. 

It is seen in Fig. 5 that there are a few very 

large particles (R ~ 10 to 13 nm) present in the 
system with a gap near R ~ 11.5 nm where there 
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ICigure 5 Evidence of two LSW systems of silver particles 
ripening independently in experiments made by Kreibig 
[ 25 ]. The observed size distribution, shown by histograms, 
fits with the composite curve F = F~ + F2, F~ = F2(ul) 
and F 2 - F 2 (u~); the values of average radii for the two 
systems u~ and u 2 are /~ =5.0nm and /~ =6.5nm 
respectively. Single LSW curves F~ (u), F z (u) or F3 (u) do 
not fit with the observations. 

are no particles. We shall discuss briefly these large 

particles, along with the results of Shvarts et al. 
[24] and Chassagne et al. [29, 30] ,  in Section 5. 

4.2. Si lver part ic les in KCI 
Silver particles in alkali halides have been studied 
by several workers. Recently Jain and Arora [26] 
have measured the size distribution of the particles 
in KC1. The crystal was dissolved in water and the 
size of the particles thus released was measured 
with an electron microscope. The observed distri- 
butions for a crystal ripened for two diflbrent 
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Figure 6 0 s t w a l d  ripening of silver particles in KC1 by diffusion through dislocations observed by Jain and Arora [26]. 
The observed distributions (i.e. histograms) are perhaps the narrowest reported in the literature and can be fitted only 
with the sharp theoretical curves F 3 (u) obtained for ripening by diffusion though dislocations. (a) 2/~ = 33 nm and 
(b) 2R = 46 nm. 

times are shown by the histograms in Figs. 6a and 
b respectively. The distributions are the narrowest 
of all the measured distributions on different 
systems we have seen so far (see for comparison 
the data given in [21] and references therein). The 
theoretical plot of Fa (u), derived earlier (Section 
2) for diffusion through dislocations, fits extremely 
well with the observations in both cases [51]. 
/72 (u) is substantially too broad. Since the ripening 
was done at a rather high temperature (700 ~ C), 
the result that the diffusion is almost completely 
controlled by transport through dislocations may 
appear surprising. However, the crystals were grown 
from the melt, quenched from high temperatures 
several times and contained a very high dislocation 
density. Durand e t  al. [38] have also found that 
metallic colloids are formed by migration of F- 
centres to dislocations even if the alkali halide 
crystals are not deformed. The most convincing 
evidence that the colloids are in fact formed at 
dislocations, even in undeformed crystals, is 
provided by the direct observations of colloids by 
Hobbs e t  al. [52] and Chassagne e t  al. [29, 30]. 

Calleja and Agull6-L6pez [32] have attempted 
to fit these data for Ag colloids in KC1 using the 
bulk diffusion distribution F 2 ( u ) .  They obtain an 
apparently good fit by superposing the two experi- 
mental distributions in Figs. 6a and b, assuming 

that the t 1/3 law holds for/~ (-=Re). This super- 
position, however, results in a distribution which 
is substantially wider than each separate experi- 
mental histogram, and explains why they are able 
to get a good fit to F2(u ). In fact the ripening 
times quoted by Jain and Arora [26] are not 
known precisely enough to test the time depen- 
dence of Re, and the limited data fit neither t 1/3 

n o r  t 1/4 . 

4.3. Suzuki  phase  in NaCI 
Kirk e t  al. [27] have studied precipitates of the 
Suzuki phase MnC12" 6NaC1 in Mn doped NaC1 
crystals. The size distribution of the precipitates 
measured by them in a crystal containing 
225 p.p.m, of MnC12 is shown in Fig. 7. 

Although Mn diffusion is the rate-controlling 
process for the transport of Mn [27], a study of 
the Suzuki phase structure shows that both Mn 2§ 
and its charge compensating cation vacancy have 
to be incorporated in the precipitate at specific 
locations. The Mn 2+ ion and the cation vacancy do 
not form a nearest neighbour pair in the phase. It 
is not possible for the Mn 2+ ion or the vacancy to 
attach themselves to the precipitate at the point of 
arrival on the surface of the precipitate. We there- 
fore expect that a relatively slow surface reaction 
will control the growth kinetics and compare the 

1622 



"3 

d- 

0.5 1.0 1,5 210 
L t ~  

Figure 7 Size distribution: of the Suzuki phase of/vlnC12 , 
6NaC1 cystals observed by Kirk, Kahn and Pratt 
[27] (histogram) and theoretical plot of F~ (u), the LSW 
curve for surface controlled reaction for R = 128 nm. The 
concentration of Mn in NaC1 is 225 p.p.m. The small 
discrepancy between theory and experiment for u < 0.5 is 
probably not significant (see text). The cation vacancy and 
Mn 2+ ion have to be incorporated in the precipitate at 
specific sites. Since they cannot deposit themselves onto 
the precipitates at the points of arrival, surface reaction is 
believed to be the rate-controlling mechanism. 

theoretical distribution Fl(u) ,  Equation 26, with 
the experimental results in Fig. 7. The agreement 
of theory with experiment is good except for the 
very small number of  particles for u < 0.5. This 
discrepancy is perhaps to be expected in view of 
the discussion of the approximation used in 
expanding Thomson's equation (Equation 13) in 
Section 3. It was mentioned earlier that this error 
is expected to be most apparent in the surface re- 
action case. F~(u) and F3(u) are much narrower 
than the experimental distribution, although it 
must be admitted that a superposition of  several 
such curves would, of  course, give a better fit. 

5. The presence of large particles and the 
influence of gross inhomogeneities 

We have seen ill Section 4 that there were a few 
large particles of  silver present in the glass in 
Kreibig's experiments. These did not form part of  

the two LSW systems which described the size 
distribution of the rest of  the particles. The occur- 
rence of these anomalously large particles is not 
unique to silver particles in glass mad is found in 
many other systems. Chellman and Ardell [21] 
found such particles in metal alloys. Kirk et al. [27] 
also observed a few large precipitates of  the Suzuki 
phase in their more heavily doped crystals of  NaC1. 
The size distribution histograms of Kirk et al. be- 
came quite complex in the heavily doped crystals. 

Shvarts et al. [24] have reported the size distri- 
bution of  Na and K colloids in NaC1 and KC1 
heavily coloured by electrolytic coloration. They 
found that the distribution of colloids was highly 
non-uniform in their crystals. A long tail on the 
large size side of the size distribution is observed 
in these crystals. The size distribution spectra of  
Chassagne et  al. [29] are also very complex and 
show an anomalously large population of large 
particles. (Note that in the replica electron micro- 
scopy technique used by  Shvarts et at., the true 
size distribution is obtained from the measured 
size distribution by the method described by 
Lifshitz and Slezov [10]. This correction makes 
the true distribution of a slightly different shape 
from the observed one, but cannot explain the 
population of large particles or the tail on the large 
size side.) 

A notable result of  LSW theory for Ostwatd 
ripening in all three cases considered is the sharp 
cut-off at some value of R close to but larger than 
/~ on the large size side. The presence of a few very 
large particles or a gradual tail on the large size side 
are results exactly opposite to the predictions of  
the theory. 

The result derived in Section 3 that different 
groups of particles may form different LSW sys- 
tems (or that there may be a more or less con- 
tinuous distribution of /~)  was based on a non- 
uniformity in the distribution of  particles, but it 
was implicitly assumed that 3, >>R (or 3,>> ae in 
the case of dislocations) for the particles in each 
system, so that the approximations of  spherical 
symmetry and steady state diffusion are still valid. 
In any one LSW system, each particle "sees" all 
the other particles through its interaction with 
Ca(t ) (which is determined by the dR/d t  of  all par- 
ticles). In this case, no single particle can go ahead 
and grow very large, as all particles with comparable 
radii R > R  e draw the solute from Ca(t ) and grow 
at comparable rates. 

A close study of  the results of  Shvarts et al. [24] 
and Chassagne et  al. [29] shows that the distribu- 
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tion of particles in space in the crystals is character- 
ized by large inhomogeneities. In many of the 
photographs of colloids in crystals [28-30] ,  the 
spacing between the surfaces of the colloidal par- 
ticles is less than the particle radii R. Chassagne et 
al. [29] also found that the number of F-centres 
lost during the ripening process was much larger 
than the number of alkali metal atoms present in 
the colloids obtained and measured with the help 
of the electron microscope. The discrepancy is 
very large and cannot be explained by taking into 
account the thermal diffusion of F-centres out of 
the crystal during the ripening process [31, 53, 54]. 
A more likely explanation [29] is that the inhom- 
ogeneous nature of the colloid distribution prevents 
the replication electron microscopy from providing 
a true average picture of the system. In both sets 
of experiments the colloid size distributions have 
complex shapes which change with annealing time. 
All these features suggest that in these systems we 
are dealing with conditions which result in at least 
some of the colloidal particles not meeting the 
criteria for forming an LSW system. In particular, 
it appears as if groups of particles are formed 
which have X ~ R  instead of MR. These systems 
are very complex, since the concepts of steady 
state diffusion and spherical symmetry around 
each particle break down (see also Section 3.3). A 
satisfactory theory of Ostwald ripening under 
these conditions is not available (see however 
Chellman and Ardell [21] for a limited attempt at 
the problem). In addition, it is also possible that 
very closely spaced particles (3, ~ R) may coalesce 
by actual particle migration (driven in the case of 
colloids presumably by surface diffusion). This 
effect is not included in the main results of the 
LSW theory of ripening,but is extremely important 
for the growth of particles in gases and liquids 
where it is the dominant ripening process (see for 
example [55-61].  

Despite these difficulties, we can understand 
in a general way the features of the size distribu- 
tion for systems where some particles are formed 
very close together. Such a cluster of closely spaced 
particles can ripen independently of the behaviour 
of the rest of the particles in the solid (see Section 
3.5), so that it may ripen relatively quickly into 
one large particle. If there are several such clusters 
of particles, after some period of ripening there 
will be a few very large particles originating from 
these clusters, plus the rest of the solid which may 
still contain one or more groups of more dispersed 

particles which are still forming LSW systems. In 
tiny one experiment, the particle size distribution 
is then likely to display evidence for an LSW-type 
distribution plus some "anomalously" large 
particles. 

6. Conclusions 
In this paper we have examined the basic Lifshitz- 
Slezov-Wagner theory of Ostwald ripening, ex- 
tended it to include diffusion of solute along dis- 
locations or grain boundaries, and explored the 
conditions under which it may be expected to 
hold in practice. It is apparent from this study that 
it is quite possible for different regions of the same 
solid to ripen independently. This behaviour seems 
to be borne out when attempts are made to apply 
the simple theory to the growth of particles in 
ionic crystals, since several of the systems studied 
show features which cannot be explained on the 
basis of one ripening system. In particular, some 
very large particles are often found which are very 
likely to have resulted from special regions where a 
few closely spaced particles have relatively quickly 
ripened or coalesced into one precipitate. This 
possibility is consistent with the very inhomo- 
geneous distributions of particles observed by elec- 
tron microscopy. 

One characteristic of the systems to which we 
have applied the theory is that they are generally 
rather dilute by comparison with precipitation 
problems which have been studied in alloys. For 
example, the total "solute" concentration in the 
case of the growth of colloids from F-centres in 
alkali halides is <0.1%, whereas in metallurgical 
applications of LSW theory to the coarsening of 
Ni3A1 particles in Ni-A1 alloys the solute concen- 
tration may be several percent. Nevertheless, some 
of the discrepancies between LSW theory and 
observations in metallurgical systems may, on 
careful examination, be due to some of the limita- 
tions of the theory which we have discussed. 

Appendix 1 
List of symbols used 
O 

0L 

~2 
X 

R 
Rc 
Re(O) 

interfacial energy (ergs cm-2) 
2crfZ/kT (cm) 
atomic volume of solute atom (cm 3) 
interparticle separation (cm) 
radius of the particle (cm) 
critical radius 
value of Re at t = 0 
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U 

K 
D 

D1 
Dg 
G 

C 

CR 

Ca 

Ca 

G 

t 
T 

n(t) 

a 

a e  

b 
S 

X 

y 
~ )  

B 

L 

average radius 
reduced radius R/R e 
surface reaction rate constant (cm sec -1 ) 
bulk diffusion coefficient (cm 2 sec -1) 
dislocation diffusion coefficient 
grain boundary diffusion coefficient 
rate constant in dislocation or grain 
boundary case (cm 3 sec -1) 
solute concentration at general point 
(cm -3) 
solute concentration at surface of  precipi- 
tate of  radius R 
average concentration of  solute in bulk of  
crystal 
concentration of  solute in equilibrium 
with a plane surface (R -+ oo) 
concentration of  solute atoms in the par- 
ticle 
time (sec) 
relaxation time 
number density of  particles at time t 
(cm -3 ) 
radius of  dislocation line (cm) 
effective value of  a 
thickness or width o f  grain boundary (cm) 
perpendicular distance from the core of  a 
dislocation line or from a grain boundary 
distance from the centre of  the particle 
along the dislocation line or in the grain 
boundary plane 
solute current into particle 
solute current from bulk into the disloca- 
tion line (or grain b o u n d a r y , ) c m  -1 
(or cm -2) sec -1 

strength of  potential of  the dislocation 
stress field 
separation of  two regions of  crystal. 

Appendix 2 
Rate of change of particle radius due to 
dislocation and grain boundary diffusion of 
solute atoms 
In the steady state approximation where 3C/3t = 0 
at all points in the solid, a number of  different 
approaches can be used to calculate dR/dt for 

dislocation or grain boundary diffusion. We con- 
sider these in this appendix. In all cases, we shall 
neglect the influence of  the particle itself on the 
diffusion process to or along the dislocation or 
grain boundary, so that the diffusion problem re- 
tains the symmetry of  the line or planar defect. 
This approximation will be reasonable provided 
the particle radiusR is much smaller than the inter- 
particle separation k or, more precisely, smaller 
than the distance over which the solute concentra- 
tion achieves its mean bulk value Ca. 

1. Dis locat ion dif fus ion 
The geometry o f  the problem is shown in Fig. la. 

(a) Let us assume first of  all that there is no 
appreciable diffusion of  solute from the bulk to 
the dislocation line, but that the solute concentra- 
tion in the dislocation is maintained at the bulk 
value C a at a distance x = d  (d>>R) from the 
particle by some means. 

In the steady state 

~2C(x) 
D1 3x z - 0 (A1) 

so that with boundary conditions C ( x ) =  CR at 
x = R and C(x)= Ca at x = d we find that the 
current density ] of  solute into the particle is 
given by 

(3C(x)] D1 
] = D a \  3x J~=R - - d - ( C a  --CR) (a2)  

(b) Suppose now that there is lateral diffusion 
of  solute into the dislocation from the bulk. In the 
steady state the equation of  continuity is then* 

fraUD1 O2C(x) 3x ~ + ](x) = 0 (A3) 

where 

/(x) = 27raD(~@),=o (A4) 

*This treatment does not explicitly include the drift of solute into the dislocation by virtue of the elastic interaction 
between the dislocation and a solute atom. This may be included in a crude way by an appropriate choice of the dis- 
tance a as the interaction distance. (See Equation 6). 
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To find ](x)we need C(s), which can be found in 
the steady state approximation since in cylindrical 
symmetry 

1 o ac(s) 
s - o (AS) 

s Os ~s 

This gives, with boundary conditions C(s) = C(x) 
at s = a and C(s) = Ca at s = t 

so that 

C(s) = Ca + [Ca -- C(X)] In (sfl) 
In q/a) 

(A6) 

21rD [ C a -  C(x)] 
](x) -- (A7) 

In (l/a) 

Substituting this in Equation A3 and putting 
C ( x )  - -  C a = y ,  w e  find 

8=Y K2y = 0 (AS) 
~x z 

where 

2D 
K 2 - (A9) 

a2D1 In (I/a) 

Thus y = A CKx+ Be Kx where A and B are found 
from the boundary conditions 

y = CR- -Caa tx  = R 

y = 0 a t x  = d(d -+~) 

This leads to a current density into the particle 
given by 

j = DI (~C(x)t 

\ ~x ]x=R (AIO) 

= D,K[Ca--CR l coth [K(d-R)]  

I fD -+ O,K -+ 0 and coth [K(d -- R)] "~ 1/K(d -- R), 
so that Equation AIO reduces to Equation A2 as 
expected. I f d  -+ ~ for finite K then 

] = D,K(Ca--CR) ( A l l )  

(c) An alternative approximation is to assume 
that the solute in the dislocation pipe behaves like 
a "gas" with constant concentration C R . The cur- 

rent into the particle must then equal the total 
lateral flow into the dislocation 
i.e. 

(A12)  
~a2/ = f ](x)dx (d>> R) 

R 

with 

Thus 

27rD 
](x) - In (;/a) (Ca - c ~ )  

2Dd (A13) 
] ~- a 2 In q/a) (Ca-  CR) 

This is essentially the "gas-like" model of Bullough 
and Newman [36]. The rate of  change of particle 
radius is given by* 

(Cp --CR) 47rR ~ dR/dt = 2~ra2j 

So that in all cases we have 

dR G (C~--CR) 
dt R 2 Cp (Cp ~ CR) 

where:case(a) G = a2D1/2d 

case (b) G = a / ( 2DD1 

2 v tin q/~)] (d ~ )  
D d  

case ( c )  a - 
in q/a)  

Thus the form of dR/dt is independent of which 
model is used, although the interpretation of the 
factor G differs for the three cases. 

2. Grain boundary diffusion 
The geometry of the problem is shown in Fig. lb. 

(a) I f  there is no transport from the bulk to the 
grain boundary then in the boundary plane we 
have, in the steady state 

1 ~ aC(x) 
x - 0. (A14) 

x 3 x  ~x 

This gives (c.f. Equations A5 to A7) the current 
density into the particle as: 

/ = Dg ~ (Ca--CR) (A15) 
Ox ]x=R = DgR ln(d/R) 

where C(x) = Ca at x = d(>>R). 

*A single dislocation pipe cuts the particle over an area tea = on each side, The extension to more than one dislocation is 
obvious. 
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(b) If  there is lateral diffusion from the bulk to 
the grain boundary then the equation of continuity 
is 

b D 3 3C(x)+ 
x g~x x ~  ](x) = 0 (a16)  

where 

](x) = 2D{3C(s)'  (A17) 

(The 2 occurs because solute enters from both 
sides.) 

To find ](x) we use the fact that the lateral 
problem is a one-dimensional one so that 

( 3C(s~ Ca --C(x) (AI8)  
3s ]s=bn-- l--b~2 

where 

C(s) = C a a t s  = L 

Thus Equation A16 becomes, with C(x) -- Ca = y  

1 3  3y 
x ~x x 3x --K'2Y = 0 (A19) 

where 
2D 

K '2 - (A20) 
Dgb(l--b/2) 

I f  we now put K'x  = z, Equation A20 can be 
converted to 

3 0y 
z - 7  z ~ - z2y  = 0 (A21) 

which is Bessel's equation with n = 0 (see [62], 
Chapter 2 I). 

We seek a solution to this equation which tends 
to zero as z tends to infinity (C(x) --> Ca as x -+ ~) ,  
so that we choose the zeroth order Bessel function 
Ko(z) (Ko(z) ~ e -~ x/(2hrz) as z --> oo (see [621, 
p. 584 where the functions Kn(z) are denoted by 
~;h,(z)). 

Thus we have y = AKo(z), with the constant of  
integration A determined by the boundary condi- 
tion y = Ca -- Ca when z = K'R i.e. 

A = (CR--Ca)/Ko(K'R).  

The current dentsity of solute atoms into the par- 
ticle is then 

J= ]x=# 

d 
Since ~z [K~ = - -K,  (z) we have 

j = DgK'(Ca -- Cn) K, (K'R) (A22) 
Ko(K'R)" 

To proceed further, we note that for large values 
o fx  the solution y = C(x) -- Ca varies as 

x/(K'x; (A23) 

Since the approximations we have made require 
the particle of radius R to be much smaller than 
the distance over which C(x) varies significantly, 
which is of order x ~ 1/K', we must have R ~ 1/1(2' 
i.e. K'R ~ 1 orDg/D > R2/tb. We can than use the 
small z approximations for the Bessel functions, 
which lead to ([62],  p. 580) 

2 
K0 (z) ~ - - in (z/2) (A24) 

7( 

K,(z )  = 2 ( t / z )  (A25) 
7/" 

so that 

y = D_~(Ca--Cn) 
R In (2/K'R) (A26) 

This is identical to Equation A15 if 2[K' =- d. 
(c) In the "gas-like" approximation (c.f. case 

(c) of the dislocation problem) we assume that 
C(.x) = C R and 

f e nd 22D(Ca-- CR.) 
2~rRb] = 21rx/(x)dx 

"n l -- b/2 
Thus (A27) 

Dd2(Ca -- Cn ) 
/ -  b ( l - -b /2)R (A28) 

Assuming a spherical particle (see Greenwood [20] 
for the different numerical constants appropriate 
to a particle of a shape which is in equilibrium 
with the grain boundary forces) the rate of  change 
of particle radius is 

(Cp -- CR) 4nR 2 (dR/d/) = 2nRbj. 

In all three cases we therefore have 

dR G ( G  - CR) 
dt - R 2 G ( G  > CR) 
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where: case (a) G - Dgb 
2 in (d/R) 

case (b) G - Ogb 
2 In (2/K'R) 

Dd 2 
case (c) G - 

2q- -b~2)  

Case (a) is essentially the same as that used by 
Greenwood [20] and Chakraverty [41].  Since 
In (d/R) and In (2/K'R) are very slowly varying 
functions o f R ( ~ d ,  ~ 2/K'), G is sensibly constant 
in all three cases. 

Thus we conclude that, with these approxima- 
tions, both dislocation and grain boundary dif- 
fusion lead to expressions for dR/dt of  the same 
general form in which dR/dt o: R -2" This should 
be compared with bulk diffusion in which case 
dR~dr ec R - 1  

Appendix 3 
Derivation of size distribution for the 
dislocation or grain boundary diffusion case 
The expression derived in Appendix 2 for the rate 
of  change of  particle radius is 

dR G (Ca - Cn) 
(A29) 

dt R 2 Cp 

Using (C R - C~)/Coo = ~/R and (Ca - C=)/Co~ = 
a/Re this becomes 

dt CpR 2 t{ e (A30) 

Making substitutions to dimensionless variables 

p = R/Re(O), x = Re/Re(O) and 

Equation A30 becomes 

dp 1 
dr--7 = y (p/x - 1) (A31) 

which is similar to the equation obtained by 
Lifshitz and Slezov for the bulk diffusion case, 
except that theirs has 1/0 ~ on the right hand side 
instead of  1/p 3 . 

We now follow the Lifshitz and Slezov pro- 
cedure and change to variables* 

u = O/x = R/Re (A32) 

r -= In (x 4) (A33) 

This procedure is followed so as to replace the 
time variable t '  with the variable r ,  which measures 
time since the critical radius variable x will increase 
monotonically with time as the solute supersatura- 
tion (Ca -- C~) decreasest. Equation A31 can then 
be transformed to 

du 4 (A34) 
dr 7 ( r ) ( u -  1 ) - - u  4 

where 

dr' 
"f(r) = 4d(x4---- ~ (A35) 

Note that the presence o f  x 4 in Equation A35 is 
unrelated to the use o f  x 4 in Equation A35, but 
originates in the fact that Equation A33 has p3 
in the denominator. In terms of  the original 
variables: 

4aGC~ dt 
3'(r) - Cv d(R4 ) (A36) 

which brings out the way 7 depends on the time 
variation o f R  e. 

Lifshitz and Slezov argue that 7(r) will tend 
asymptotically to a constant for large r,  and 
furthermore that the value o f  this constant is such 
as to make both du/dr and its first derivative with 
respect to u zero at some point u = u0. The argu- 
ments of  Lifshitz and Slezov are quite general and 
are applicable to the surface reaction case discussed 
by Wagner [13] and to this case (irrespective of  
the highest power of  u in Equation A34). Using 
tills same prescription in our case leads to 

uo = 4/3 (A37) 

and 

vo = 4ug. (A38)  

Thus we find 

du u 4 --  4u 3 (u --  1) 
g(u) = d r  4u 3 (A39) 

*Note that the power of x used in z is arbitrary, and does not influence the final results. We choose x 4 to make a 
parallel with the Lifshitz and Slezov use ofx 3 in the bulk diffusion case. 
]'This holds provided the particles are not initially all of exactly the same size, see Lifshitz and Slezov [ 10]. 
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The problem is now to use Equation A39 to derive 
a size distribution function f (R ,  t) where f (R,  t) is 
the number density of  particles with radius in the 
range R to R + dR at time t. In terms of  the new 
variables p and u we can derive two new distri- 
bution functions F(p) and r  such that 

f (R ,  t)dR = F(p, t)dp = r r)du. (A40) 

Thus 

These 
constraints. 

(a) The continuity equation 

(R, t) + ~-~[f(R, t)[~] = 0 

which in u, r space becomes 

r  r) = Ref(R,  t) (A41) 

F(p, t) = R c (O)f(R, t). (A42) 

distribution functions must satisfy two 

(A43) 

0r r) 0 
Or Ou [r = 0 (A44) 

(since from Equation A39 du/dr = --g(u)). 
(b) The conservation of  total number of  solute 

atoms per unit volume, No, which in terms of  the 
initial relative supersaturation defined by Qo = 

(No -- C~)/Cp becomes 

Substituting Equation A48 into the continuity 
equation A44 we then find an expression for F3(u) 

3 (  du 
- - l n F a ( u )  = 4 3 g(u) + lng(u)  + constant 

(A49) 

so that Fa(u) can be deduced with the aid of  
Equation A39 

To perform the integration of  1/g(u) we note 
that, using Uo = 4/3, it can be transformed to 

1 u a 
4g(u) - (u --  Uo)2 [(u + Uo)2 + 2ug ] (AS0) 

(11/18)u + (2/3)Uo 7/18 (1/6)Uo = + + 
u 2 + 3U2o + 2UUo U--Uo (U--Uo) 2 

(a51)  
After some manipulation to perform the integrals, 
we obtain 

F a (u) = 

constant u a exp [ ~ ]  exp [--~-~2 tan-' lu + u~] k u~]J 
(/4[0 --U19/6)(/g2 -~ 2uou + 4uo) 23/12 

f o r u ~ < u o  = 4/3 

QO - -  

With some manipulation this can be converted to 

- 1- K foF(P, t)p3dp (A46) 1 Rc(O)QoC p x 

Ca -- C= !4~r f" ~ F3(u) = 0 for u > Uo (A52) 

+ ' - - J o  Cp 3 f(R, t)R3dR (A45) This distribution is shown in Fig. 2. The mean 

value o f u  is E~-- 1 so that/~ ~ R  e. In fact it can be 
shown by differentiating Equation A45 with 
respect to time and assuming that f(R,  t) and Ca 

C= 1 are slowly varying functions of  time that 

o r  

1 -  
C~ 

R c(0)Q o Cp 
e -rm + K e 3 r/4 foe(U, r)u 3 du 

where 

K - 
47rR c a (0) 

3Qo 

(A47) 

Using a slight variant on the Lifshitz and Slezov 
approach, we note that if Equation A47 is to be 
satisfied as r -+ 0% r r) must have the form 

io f (R,  t)R2 dR dR ~ 0 

which with the aid of  Equation A30 for dR/dr 
gives Rc  1 = R -a . This procedure is an extension 
of  the method used by Wagner [13] for the sur- 
face reaction and bulk diffusion limited cases. The 
approximations used are equivalent to taking the 
asymptotic solutions of  Lifshitz and Slezov, which 
are valid for x = Rc/Re(O ) >> 1 i.e. large r. 

Since we have assumed that 7(r) -+ constant 
= 4u~ we also have 

r r) = constant e-3Z/4 F3 (u) (A48) R~ = Re4(0)(1 + t/r3) (A53) 
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where 

64GR~(0)  
~'3 . . . . . .  ( A 5 4 )  

2 7 a G ~  

The  supe r sa tu ra t i on  (Ca - C=) ~ I/Re t he re fo re  

falls l ike t -a/4 . 

The  n u m b e r  o f  par t ic les  pe r  u n i t  vo lume  n(t) 

is, at  long t imes  t >> ~-3 

n(t) = ~u ,  r)du = cons tan t  e 23r/4 cc t  - 3 / 4  

(ASS) 

Finally using Equation A41 

c o n s t a n t  F3(R/Re) 
f ( R ,  t) - ta m Re 

_ c o n s t a n t  Fa(R/Re).  ( A 5 6 )  
t 
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